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Abstract

The complexity of scientific software is increasing as 
computer power is rising.  Such complexity becomes 
unmanageable without the help of more sophisticated 
programming language features.  This talk will discuss
some of the features of Fortran95 which are useful for 
managing complexity, largely by using ideas from object-
oriented programming.  Examples will be given from the 
UCLA Parallel PIC Framework (UPIC) and the Summit 
Framework.



Outline:

Some new features in Fortran95:

    Modules, Array Objects, Derived Types

Object-Oriented Concepts in Fortran95

   Information Hiding and Data Encapsulation
   Abstract Datatypes, Classes and Objects
   Inheritance
   Dynamic Dispatch or Run-Time Polymorphism 

UPIC Framework



   Modules

   A module is a new program unit for grouping together 
subroutines, data, etc.  We will use this construct to build 
classes later.

      module my_module
      real, parameter :: pi = 3.14159      ! data goes here
      contains                                       ! procedures go here
      subroutine roots(a,b,state)
      implicit none
      real, intent(out) :: a
      real, intent(in) :: b
      integer, intent(inout) :: state
      ...           ! contents of procedure go here
                    ! Something new: pi is available here
      end subroutine roots
      end module my_module

      program my_program
      use my_module  ! make information in module available
                                 ! pi and roots are now known here
      real :: x = 1.0, y = 2.0, z = 3.0
      integer :: s = 1
                                    ! the arguments will be checked
      call roots(x,y,z)      ! interface block no longer needed
                                    ! z is still the wrong type.
      end program

Modules can be compiled separately.  Modules are 
extremely useful for managing complexity.



   Array Objects

     Arrays in Fortran90 are actually self-contained objects.
They contain hidden information about their sizes and 
shapes.  As a result of this extra information, one does not 
have to explicitly declare array dimensions in subroutines.

      subroutine dummy(f)
      real, dimension(:) :: f          ! assumed shape array

One can query the size of an array as follows:

      integer :: i
      i = size(f)

One can also declare temporary arrays inside procedures

      subroutine dummy(f)
      real, dimension(0:) :: f             ! lower bound of f is 0
      real, dimension(size(f)) :: temp      ! automatic array

However, you have to be more careful when using 
Fortran90 arrays in procedures.  Specifically, the 
procedures using such arrays must either have an explicit 
interface block whenever used or be in a module.  This is 
because the compiler needs to know whether to pass the 
address of the array (as in Fortran77), or a descriptor with 
the hidden information (as in Fortran90).  If you put all 
your procedures in modules, then you never have to 
worry.



   Derived Types

Derived types are a named group of other types which 
can be created by a user to organize information.

      type ordered_real
         real :: value
         integer :: key
      end type

This type contains one real value and one integer.  Such a 
type might be used to keep track of the order of a set of 
reals.

Derived types are similar to structs or records in other 
languages, and are a very important concept in modern 
programming.

To create a variable of this type:

      type (ordered_real) :: a, b, c
      a = ordered_real(1.,1)        ! structure constructor

One can also access components of this type as follows:

      b%value = 2.; b%key = 5

And copy all the elements

      c = a                      ! assignment operator (=) is defined
                                    ! other operators (+,*) not defined



      Why are derived types so important?  Because they 
allow us to treat variables more abstractly.

Suppose, for example, we have a Fortran77 graphics 
subroutine with the following interface:

      subroutine DISPR(f,label,scale,clip,marker,nx,nxv,ngs)
      character(len=80) :: label
      integer :: scale, clip, marker, nx, nxv, ngs
      real, dimension(nxv,ngs) :: f
      end subroutine

Four of these arguments are used to describe plots.  Since 
they will always be used together, we can define a type so 
we can always refer to them as a unit:

      type graf1d
          character(len=80) :: label
          integer :: scale, clip, marker
      end type graf1d

Then instead of calling the function DISPR, we can create a 
new function dispr_f90:

      subroutine dispr_f90(f,nx,graf_params)
      type (graf1d) :: graf_params
      real, dimension(:,:) :: f    ! nxv, ngs not needed anymore
      call DISPR(f,grparams%label,grparams%scale,
    &grparams%clip,grparams%marker,nx,size(f,1),size(f,2))

which is much easier to use.  We can also change the 
graf1d type without changing how dispr_f90 is called.



   Introduction to Object-Oriented Concepts in Fortran95

      Object-Oriented Programming (OOP) is a design 
philosophy for writing complex software.  Its main tool is 
the abstract data type, which allows one to program in 
terms of higher level concepts than just numbers and 
arrays of numbers.  In their mathematics, physicists are 
quite familiar with the power of abstraction, e.g., we 
express physics equations using the curl operator, rather 
than writing out all the components.  But we have not 
used such abstractions very much in our programming.

      OOP includes a number of concepts which have 
proved useful in programming large projects.  These are:

1. Information Hiding and Data Encapsulation

2. Function Overloading or Static Polymorphism

3. Abstract Datatypes, Classes and Objects

4. Inheritance

5. Dynamic Dispatch or Run-Time Polymorphism 



Information Hiding and Data Encapsulation

      Perhaps the most important concept is that of 
information hiding.  This means that information which is 
required in only one procedure should not be made 
known to other procedures which do not need this 
information.  Like the CIA, procedures should be informed 
of data only on a “need to know” basis.  This philosophy 
simplifies programming, because there is less detail one 
must be concerned about in programming and less 
opportunities to make mistakes.

     One way to achieve this is to encapsulate the data 
inside a derived type, and then allow only certain 
procedures (sometime called methods) to modify the data.  
One is prevented from modifying the data by any other 
means not provided by the programmer. 

      Such encapsulation permits separation of concerns.  
One can separately write and debug pieces of a large 
program, without worrying about a new procedure 
causing inadvertent damage to an older procedure.  
Writing complex program becomes an order N problem, 
rather than an order N2 problem.



Let’s look at an example of what this means.  Consider the 
following interface to a legacy Fortran77 fft procedure:

   subroutine fft1r(f,t,isign,mixup,sct,indx,nx,nxh)
   integer isign, indx, nx, nxh, mixup(nxh)
   real f(nx)
   complex sct(nxh), t(nxh)
   ... rest of procedure goes here

In this procedure, f is the input (and output) data, t is a 
temporary work array, mixup is a bit reversed table, sct is 
a sine/cosine table, indx is the power of 2 defining the 
length of the transpose, nx is the size of the f, and nxh is 
size of the remaining data, and isign is either the direction 
of the transform (-1,1) or a request to initialize the tables 
(0).

   To use this fft, one must get all of this data correct, there 
are many opportunities for mistakes.  However, most of 
this data is relevant only internal details of performing the 
fft.  The programmer only wants to worry about the data f 
and the direction of the transpose.  Life would be much 
simpler if one could merely call

      call fft1(f,isign)

without having to worry about the other details.



      One of the reason all these details are exposed is that 
Fortran77 did not allow dynamic arrays.  By using 
automatic and allocatable arrays, one can easily hide the 
scratch array t and the tables mixup and sct inside a 
wrapper function:

   subroutine fft1(f,indx,isign)
   integer :: indx, isign, nx, nxh
   real, dimension(:) ::  f
   complex, dimension(size(f)/2) :: t 
   integer, dimension(:), allocatable, save :: mixup
   complex, dimension(:), allocatable, save :: sct
   nx = size(f); nxh = nx/2
   if (isign==0) allocate(mixup(nxh),sct(nxh))
   call fft1r(f,t,isign,mixup,sct,indx,nx,nxh)

Thus the programmer does not have to worry about these 
things anymore and there is less opportunity for error.

      We have successfully hidden from the programmer 
details about the fft that are not necessary to know to use 
the fft.  Now the interface is much simpler and less error 
prone:

   call fft1(f,indx,isign)



      If one gets the interface down to its bare essentials, 
then it is unlikely to change in the future, even if the 
internal details of the procedure do change.  For example, 
suppose on a given computer, there was an optimized fft 
which was much faster than the legacy fft1r.  One could 
now replace the call to fft1r inside the wrapper function, 
and the users of the wrapper function would not have to 
change anything in their code.

   subroutine fft1(f,indx,isign)
   ...
   call faster_fft1r(f,......)        ! different internal arguments
   end subroutine

   call fft1(f,indx,isign)        ! Note the call does not change

      Thus encapsulation allows one to change the 
implementation details of a procedure without impacting 
the rest of the program.  This also allows concurrent 
development: different programmers can be modifying 
different pieces of a large program, without worrying 
about getting in each other’s way, so long as the interfaces 
do not change.



Abstract Datatypes, Classes and Objects

      An abstract data type or class encapsulates a user 
defined data type along with the operations that one can 
perform on that type.

      The main value of classes is to encapsulate and hide 
the complex details of a set of related  operations while 
presenting a simplified set of functions for the programmer 
to use.  This encapsulation prevents inadvertent 
modification of internal data and also allows the 
implementation details to be changed without impacting 
the usage of the class.

      As a result, it is much easier for different programmers 
to implement different classes without getting in each 
others way,  and it (usually) means that once a class is 
debugged, one does not have to worry about it further 
when debugging other new code.  As a result, more 
complex computational projects can be attempted.



Here is a basic electrostatic particle class

It contains a type:

      module species2d_class
      type species2d
          real :: qm, qbm, dt
          integer :: ipbc, nbmax, np, npp
          integer :: popt, dopt, sortime
          real, dimension(:,:,:), pointer :: part
      end type species2d

qm = charge on particle, in units of e
qbm = particle charge/mass ratio
dt = time interval between successive calculations
ipbc = particle boundary flag
nbmax = buffer size for passing particles between procs
np = total number of particles
npp = number of particles in this processor
popt = particle optimization flag 
dopt = charge deposit optimization flag
sortime = number of time steps between particle sorting
part(:,:,m) = particle coordinates in this processor

And it contains functions which operate on that type:

Constructors and destructors:

   subroutine new_species2d(this,qm,qbm,ipbc,popt,dopt,
sortime)

   subroutine del_species2d(this)



Initialization functions:

   subroutine init_species(this,nspace,fdist)

General functions:

   subroutine qdeposit(this,qfield)
! deposits charge on a grid

   subroutine push(this,efield,ek);
! updates the particle co-ordinates

   subroutine pmove(this,nspace)
! moves particles into appropriate processor

   subroutine sortp(this,nspace)
! sorts particles by y grid for cache optimization

   subroutine wrdata(this,iunit);
! this subroutine collects distributed particle data part
! and writes it to a file

   subroutine rddata(this,iunit,ierror)
! this subroutine reads particle data from a file and 
distributes it



      A variable of this type is called an object.  It is declared 
as follows:

      type (species2d) :: electrons

The components of a derived type are called the class data 
members.  The procedures defined in the class are called 
class member functions.  Generally, they provide the only 
means by which one can manipulate species2d objects.

Typical usage:

   type (species2d) :: electrons
   call new_species2d(electrons,qme,qbme,ipbc,sortime,
                                  popt,dopt,sortime)
   call init_species(electrons,nspace,fdist)
   call push(electrons,efield,electron_ke)
   call qdeposit(electrons,qfield)

      The public interface to a class presents an abstract 
type to the outside world.  By requiring the outside world 
to use only these interfaces, keeping the internal details of 
a class private, the internal data cannot be corrupted, and 
the implementation of methods can be changed without 
impacting others.



Inheritance

      Inheritance is a mechanism to create a hierarchy of 
classes in which a parent (or base) class contains the 
common properties of the hierarchy and child (or derived) 
classes can modify (or specialize) these properties.  The 
value of inheritance is to avoid duplicating code when 
creating classes which are similar to one another.

      In object-oriented languages, inheritance specifically 
refers to a data relationship where the child class contains 
the data and functions of the parent.  This allows the child 
to act as a parent for those functions that the child is not 
modifying.  In other words, an inheritance relationship is 
like that of a Russian matrioska doll, where one doll fits 
inside another.

      Inheritance is automated in object-oriented languages 
because of this special relationship.  In Fortran95, 
however, inheritance must be manually constructed.



      To see how this works, let us continue with the 
particle example.  Now suppose we want to create a 
special class for relativistic, electromagnetic particles which 
contains additional information specific to pushing particles 
with electromagnetic fields, namely the speed of light and a 
flag for choosing a current deposit method, but the other 
information for a particle is the same as before, and we 
would like to avoid rewriting that code for the 
electromagnetic class. 

      There are several ways to achieve this.  One way is to 
define an rel_em_species2d class to explicitly contain a 
speciesd2d object in its class definition:

      module rel_em_species2d_class
      use species2d_class
      type rel_em_species2d
          type (species2d) :: es
          real :: ci
          integer :: djopt
      end type rel_em_species2d

ci = reciprical of velocity of light
djopt = current deposit optimization flag

We also have to define two new methods:

   subroutine push(this,efield,bfield,electron_ke)
   subroutine jdeposit(this,cfield)



We want all the other methods defined to work with 
electrostatic particles to also work with the new particles.  
In other words, the following functions must also work:

   subroutine qdeposit(this,qfield)
   subroutine pmove(this,nspace)
   subroutine sortp(this,nspace)
   subroutine wrdata(this,iunit);
   subroutine rddata(this,iunit,ierror)

One way is to delegate the work to the parent class, by 
writing a one line subroutine for the new class, which 
merely calls the original subroutine for the old class:

   subroutine qdeposit(this,qfield)
   type (rel_em_species2d) :: this
   call qdeposit(this%es,qfield)
   end subroutine

In an OO language, these one line subroutines would not 
have to be written.

Typical usage:

   type (rel_em_species2d) :: relectrons
   call new_species2d(relectrons,qme,qbme,ipbc,sortime,
                                  popt,dopt,sortime)
   call init_species(relectrons,nspace,fdist)
   call push(relectrons,efield,bfield,electron_ke)
   call qdeposit(relectrons,qfield)
   call jdeposit(relectrons,cfield)



Dynamic Dispatch or Run-Time Polymorphism

      Run-time polymorphism (also known as dynamic 
binding) allows a single object name to refer to any 
member of an inheritance hierarchy and permits a 
procedure to resolve at run-time which actual object is 
being referred to.  This is useful because it allows one to 
write programs in terms of a single type which would 
behave differently depending on the actual type.  Object-
oriented languages support this behavior.  Fortran95 does 
not, with the exception of elemental functions.

   In other words, we would like to be able to write a 
subroutine like this:

   subroutine update(this,efield,bfield,ke)
   type (any_kind_of_species) :: this
   call push(this,efield,bfield,ke)      ! does the right stuff

which does something like this:

   subroutine update(this,efield,bfield,ke)
   type (any_kind_of_species) :: this
   if (this==species2d) then
      call push(electrons,efield,ke)
   else if (this==rel_em_species2d) then
      call push(electrons,efield,bfield,ke)
   endif
   end subroutine

There are techniques for  accomplishing this in Fortran95, 
but I do not have time to go into them now.



UPIC Framework

      A framework is a unified environment containing all 
the components needed for writing code for a specific 
problem domain.  Its goal is the rapid construction of new 
codes by reuse of trusted modules.

     UPIC Framework designed to help construct Plasma 
PIC calculations by student programmers.

     Supports multiple numerical methods, different physics 
approximations, different numerical optimizations and 
implementations for different hardware. 

      Designed to hide the complexity of parallel processing.

      The UPIC Framework has been used to build a 
number of new PIC codes:

1. QuickPIC, a quasi-static plasma accelerator code
2. QPIC, a quantum PIC code
3. BEPS, a computational lab for teaching plasma physics
4. HIPASS2, a space physics code
5. an unnamed cosmology code

For further information:

http://exodus.physics.ucla.edu/Fortran95/PSTIResearch
LecSeries1.html



Layered Approach (software stack)

Bottom Layer: optimized Fortran77 kernels.

• Well tested, often with years of use, don’t need to fix it

Lower Layer: common utility functions

• Timing, trace facilities, tracking memory leaks

• Parallel I/O

Middle Layer: helper objects that work with Fortran90 
arrays.  They describe data, do not contain data

• Fortran90 arrays powerful, popular, well-understood

• Simpler environment for building new high level objects

• Hides parallel processing details

• Implements some polymorphism

• Can be used in other codes and frameworks

Higher Layers: objects with properties

• Objects contain hidden pointers to all structures need to 
perform required operation

• Send message to object: “FFT yourself.”





Lower Level Classes in UPIC Framework

Errors class

   This “class” provides support for debugging

Parallel class

      This “class” provides basic support for parallel 
processing.  Designed for spectral methods with the 
number of processors equal to a power of 2.

Perrors class

   This “class” modifies the error class to provide support 
for parallel debugging.

Spect2d Class

      This class encapsulates basic information about 
simulations which use 2d spectral methods for solutions.

Input2d class

   This “class” defines the input namelist variables and 
provides default values for each of them.



Middle Level Classes in UPIC Framework

Ufield2d class

   This class provides support for uniformly partitioned 
distributed scalar and vector arrays.

Nfield2d class

   This class provides support for non-uniformly 
partitioned distributed scalar and vector arrays.

Fdist2d class

   This middle level class provides functions to describe 
distributions of particles.

FFT2d class

   This class provides functions to perform real to complex 
2d FFTs for uniformly partitioned scalar or vector data.

Fpois2d class

   This class provides functions to solve Poisson’s equation 
in fourier space for scalar or vector data.

Part2d class

   This middle level class contains information about particle 
properties and information needed to process particles.



High Level Classes in UPIC Framework

S_field2d class

      This class provides support for scalar fields that have 
properties.  Examples of such fields include charge density 
or potentials.  This class encapsulates the information 
necessary for the fields to be able to perform various 
operations such as solving Poisson’s equation.

V_field2d class

      This class provides support for vector fields that have 
properties.  Examples of such fields include current 
density or electric fields.  This class is very similar to the 
scalar field class in functionality.

Species2d class

      This class contains particle co-ordinates as well as a 
particle helper object which describes properties of a 
particle.  There are three main methods in the class, 
depositing charge and current and pushing particles.  The 
helper object determines what algorithms are used in each 
case.

Plasma2d_class

      This class encapsulates the entire code into one super 
class.  One merely puts all the initial variables into a type.



Here is the implementation of one of the functions:

         subroutine transp2d(source,f,dest,g)
! this subroutine performs transpose between different layouts
! source, dest = ufield2d descriptors of data
! f = source for transpose
! g = result of transpose
! kstrt = starting data block number, a global variable
         implicit none
         type (ufield2d), intent(in) :: source, dest
         complex, dimension(:,:,:) :: f, g
! local data
         integer :: nx, ny, nxv, nyv, kxp, kyp, kxpd, kypd
         integer :: jblok, kblok
         complex, dimension(dest%nd2p,source%nd2p,size(f,3)) :: s
         complex, dimension(dest%nd2p,source%nd2p,size(g,3)) :: t
         character(len=10), save :: sname = ':transp2d:'
         if (monitor==2) call werrfl(class//sname//' started')
! check for errors
         if (monitor > 0) then
         if ((source%partition /= 1) .or. (dest%partition /= 1)) then
            erstr = ' invalid/non-conforming partition'
            UFIELD2D_ERR = 6; EXCEPTION = EXCEPTION + 1
            call ehandler(EDEFAULT,class//sname//erstr); return
         endif
         if ((source%mshare /= 0) .or. (dest%mshare /= 0)) then
            erstr = ' non-conforming memory sharing'
            UFIELD2D_ERR = 7; EXCEPTION = EXCEPTION + 1
            call ehandler(EDEFAULT,class//sname//erstr); return
         endif
         endif



! obtain transpose arguments
         nxv = size(f,1); nyv = size(g,1)
         kxp = dest%nd2p; kyp = source%nd2p
         kxpd = size(g,2); kypd = size(f,2)
         jblok = dest%n2blok; kblok = source%n2blok
         nx = source%nd1; ny = source%nd2
         if (abs(source%layout - dest%layout)==1) then
! make sure arrays are conforming
            if ((source%nd1 /= dest%nd2) .or. (source%nd2 /= dest%nd1)) &
     &then
               erstr = ' non-conforming array'
               UFIELD2D_ERR = 8; EXCEPTION = EXCEPTION + 1
               call ehandler(EDEFAULT,class//sname//erstr); return
            endif
! perform transpose
            call PTPOSE(f,g,s,t,nx,ny,kstrt,nxv,nyv,kxp,kyp,kxpd,kypd,jb&
     &lok,kblok)
! unsupported transpose
         else
            erstr = ' unsupported transpose'
            UFIELD2D_ERR = 9; EXCEPTION = EXCEPTION + 1
            call ehandler(EDEFAULT,class//sname//erstr); return
         endif
         if (monitor==2) call werrfl(class//sname//' complete')
         end subroutine transp2d



Guard cells Guard cells

Guard cellsGuard cells

Ufield2d Uniformly Partitioned Data



Nfield2d Non-uniformly Partitioned Data

 



      module plasma2d_class          ! Super class

class library for describing high level 2d plasma objects

      type plasma2d
         integer :: idproc, id0, nvp, mshare, nloop, itime
         integer :: ou, ov, or, os
         type (spect2d) :: space
         type (s_field2d) :: q, qi, den, pot
         type (v_field2d) :: fxy, bxy, cu, exyz, bxyz
         type (fdist2d) :: ebackg, ebeam, elects
         type (part2d) :: epart
         type (species2d) :: electrons
         real, dimension(:,:), pointer :: wt
         real, dimension(:,:,:), pointer :: fv
      end type plasma2d

idproc = processor id in lgrp communicator
id0 = processor id in MPI_COMM_WORLD
nvp = number of real or virtual processors
mshare = (0,1) = (no,yes) architecture is shared memory
nloop = number of time steps in simulation
itime = current time step
ou, ov, or, os = output fortran unit numbers
space= helper objects for 2d spectral fields
q, qi, den, pot = scalar field objects
fxy, bxy, cu, exyz, bxyz = vector field objects
ebackg, ebeam, elects = objects for distribution functions
epart = helper object for electrons
electrons = electron object
wt = time history array for energies
fv = velocity distribution



This high level object contains all the variables describing a 
plasma, including high level fields and species.

There is one main method in the class, advancing the 
plasma state one time step.

Constructors:

      subroutine new_plasma2d(this)
! this subroutine creates a high level 2d plasma object

Destructor:

      subroutine del_plasma2d(this)
! delete a high level 2d plasma object

General functions:

      function update_plasma2d(this) result(done)
! this subroutine updates a 2d plasma object one time step
! done = current time step itime > 0, if no error
! otherwise = (-1,-2), indicating simulation is 
(complete,aborted)

      subroutine printout_plasma2d(this)
! this subroutine prints out the data members of a 
plasma2d object



Fortran90 Main Code:

      program simulation2d
!
      use plasma2d_class
      implicit none
      integer :: done = 0
      type (plasma2d) :: plasma
!
      call new_plasma2d(plasma)
      do while (done >= 0)
         done = update_plasma(plasma)
! one could process additonal events here
      enddo
      call del_plasma2d(plasma) 
!
      end program simulation2d

C Main program:

#include <stdlib.h>
#include <stdio.h>

/* prototypes for internal procedures */

void NEW_2DPLASMA(int *plasma_id);
void DEL_2DPLASMA(int *plasma_id);
int UPDATE_2DPLASMA(int *plasma_id);

int main(int argc, char *argv[])
{
   int done = 0, plasma;

   NEW_2DPLASMA(&plasma);
   while (done > 0) {
      done = UPDATE_2DPLASMA(&plasma);
/* one could process additonal events here */
   }
   DEL_2DPLASMA(&plasma);
   return 0;
}
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